
NAG C Library Function Document

nag_zsytri (f07nwc)

1 Purpose

nag_zsytri (f07nwc) computes the inverse of a complex symmetric matrix A, where A has been factorized
by nag_zsytrf (f07nrc).

2 Specification

void nag_zsytri (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, const Integer ipiv[], NagError *fail)

3 Description

To compute the inverse of a complex symmetric matrix A, this function must be preceded by a call to
nag_zsytrf (f07nrc), which computes the Bunch–Kaufman factorization of A.

If uplo ¼ Nag Upper, A ¼ PUDUTPT and A�1 is computed by solving UTPTXPU ¼ D�1 for X.

If uplo ¼ Nag Lower, A ¼ PLDLTPT and A�1 is computed by solving LTPTXPL ¼ D�1 for X.

4 References

Du Croz J J and Higham N J (1992) Stability of methods for matrix inversion IMA J. Numer. Anal. 12
1–19

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: indicates how A has been factorized as follows:

if uplo ¼ Nag Upper, A ¼ PUDUTPT , where U is upper triangular;

if uplo ¼ Nag Lower, A ¼ PLDLTPT , where L is lower triangular.

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix A.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
On entry: details of the factorization of A, as returned by nag_zsytrf (f07nrc).

f07 – Linear Equations (LAPACK) f07nwc

[NP3645/7] f07nwc.1

On exit: the factorization is overwritten by the n by n symmetric matrix A�1. If

uplo ¼ Nag Upper, the upper triangle of A�1 is stored in the upper triangular part of the array;

if uplo ¼ Nag Lower, the lower triangle of A�1 is stored in the lower triangular part of the array.

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix in the array a.

Constraint: pda � maxð1; nÞ.

6: ipiv½dim� – const Integer Input

Note: the dimension, dim, of the array ipiv must be at least maxð1; nÞ.
On entry: details of the interchanges and the block structure of D, as returned by nag_zsytrf
(f07nrc).

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_SINGULAR

The block diagonal matrix D is exactly singular.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed inverse X satisfies a bound of the form

if uplo ¼ Nag Upper, jDUTPTXPU � Ij � cðnÞ�ðjDj jUT jPT jXjP jU j þ jDj jD�1jÞ;

if uplo ¼ Nag Lower, jDLTPTXPL� Ij � cðnÞ�ðjDj jLT jPT jXjP jLj þ jDj jD�1jÞ,
cðnÞ is a modest linear function of n, and � is the machine precision.

f07nwc NAG C Library Manual

f07nwc.2 [NP3645/7]

8 Further Comments

The total number of real floating-point operations is approximately 8
3
n3.

The real analogue of this function is nag_dsytri (f07mjc).

9 Example

To compute the inverse of the matrix A, where

A ¼

�0:39� 0:71i 5:14� 0:64i �7:86� 2:96i 3:80þ 0:92i
5:14� 0:64i 8:86þ 1:81i �3:52þ 0:58i 5:32� 1:59i

�7:86� 2:96i �3:52þ 0:58i �2:83� 0:03i �1:54� 2:86i
3:80þ 0:92i 5:32� 1:59i �1:54� 2:86i �0:56þ 0:12i

1
CCA

0
BB@ :

Here A is symmetric and must first be factorized by nag_zsytrf (f07nrc).

9.1 Program Text

/* nag_zsytri (f07nwc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo_enum;
Nag_MatrixType matrix;
Nag_OrderType order;
/* Arrays */
Integer *ipiv=0;
char uplo[2];
Complex *a=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f07nwc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;

#else
pda = n;

#endif

/* Allocate memory */
if (!(ipiv = NAG_ALLOC(n, Integer)) ||

f07 – Linear Equations (LAPACK) f07nwc

[NP3645/7] f07nwc.3

!(a = NAG_ALLOC(n * n, Complex)))
{

Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo);
if (*(unsigned char *)uplo == ’L’)

{
uplo_enum = Nag_Lower;
matrix = Nag_LowerMatrix;

}
else if (*(unsigned char *)uplo == ’U’)

{
uplo_enum = Nag_Upper;
matrix = Nag_UpperMatrix;

}
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}

if (uplo_enum == Nag_Upper)
{

for (i = 1; i <= n; ++i)
{

for (j = i; j <= n; ++j)
Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

/* Factorize A */
f07nrc(order, uplo_enum, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07nrc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Compute inverse of A */
f07nwc(order, uplo_enum, n, a, pda, ipiv, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f07nwc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print inverse */
x04dbc(order, matrix, Nag_NonUnitDiag, n, n, a, pda, Nag_BracketForm,

"%7.4f", "Inverse", Nag_IntegerLabels, 0,
Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n",fail.message);
exit_status = 1;
goto END;

}

f07nwc NAG C Library Manual

f07nwc.4 [NP3645/7]

END:
if (ipiv) NAG_FREE(ipiv);
if (a) NAG_FREE(a);
return exit_status;

}

9.2 Program Data

f07nwc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-0.39,-0.71)
(5.14,-0.64) (8.86, 1.81)
(-7.86,-2.96) (-3.52, 0.58) (-2.83,-0.03)
(3.80, 0.92) (5.32,-1.59) (-1.54,-2.86) (-0.56, 0.12) :End of matrix A

9.3 Program Results

f07nwc Example Program Results

Inverse
1 2 3 4

1 (-0.1562,-0.1014)
2 (0.0400, 0.1527) (0.0946,-0.1475)
3 (0.0550, 0.0845) (-0.0326,-0.1370) (-0.1320,-0.0102)
4 (0.2162,-0.0742) (-0.0995,-0.0461) (-0.1793, 0.1183) (-0.2269, 0.2383)

f07 – Linear Equations (LAPACK) f07nwc

[NP3645/7] f07nwc.5 (last)

	f07nwc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	ipiv
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_SINGULAR
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

